CLASS IX : CHAPTER - 1 NUMBER SYSTEM

1	Which	~f	tha	f_11	Aurina	:	tena?
1.	Which	OI	uie	101	gillwol	15	uue:

(a) Every whole number is a natural number (b) Every integer is a rational number

(c) Every rational number is an integer (d) Every integer is a whole number

2. For Positive real numbers a and b, which is not true?

(a)
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

(a)
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 (b) $(a+\sqrt{b})(a-\sqrt{b}) = a^2 - b$

(c)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

(c)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 (d) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a + b$

3. Out of the following, the irrational number is

- (a) $1.\overline{5}$ (b) $2.4\overline{77}$ (c) $1.2\overline{77}$ (d) π

4. To rationalize the denominator of $\frac{1}{\sqrt{a+b}}$, we multiply this by

(a)
$$\frac{1}{\sqrt{a+b}}$$

(b)
$$\frac{1}{\sqrt{a-b}}$$

(a)
$$\frac{1}{\sqrt{a+b}}$$
 (b) $\frac{1}{\sqrt{a-b}}$ (c) $\frac{\sqrt{a+b}}{\sqrt{a+b}}$ (d) $\frac{\sqrt{a-b}}{\sqrt{a-b}}$

(d)
$$\frac{\sqrt{a}-b}{\sqrt{a}-b}$$

5. The number of rational numbers between $\sqrt{3}$ and $\sqrt{5}$ is

- (a) One (b) 3 (c) none (d) infinitely many

6. If we add two irrational numbers, the resulting number

- (a) is always an irrational number
- (b) is always a rational number
- (c) may be a rational or an irrational number (d) always an integer

7. The rationalizing factor of $7-2\sqrt{3}$ is

(a)
$$7 - 2\sqrt{3}$$

(b)
$$7 + 2\sqrt{3}$$

(c)
$$5+2\sqrt{3}$$

(a)
$$7-2\sqrt{3}$$
 (b) $7+2\sqrt{3}$ (c) $5+2\sqrt{3}$ (d) $4+2\sqrt{3}$

8. If $\frac{1}{7} = 0.\overline{142857}$, then $\frac{4}{7}$ equals

- (a) 0.428571 (b) 0.571428 (c) 0.857142 (d) 0.285718

9. The value of n for which \sqrt{n} be a rational number is

- (a) 2 (b) 4 (c) 3 (d) 5

10. $\frac{3\sqrt{12}}{6\sqrt{27}}$ equals

- (a) $\frac{1}{2}$ (b) $\sqrt{2}$ (c) $\sqrt{3}$ (d) $\frac{1}{2}$

11. $(3+\sqrt{3})(3-\sqrt{2})$ equals

- (a) $9-5\sqrt{2}-\sqrt{6}$ (b) $9-\sqrt{6}$ (c) $3+\sqrt{2}$
- (d) $9-3\sqrt{2}+3\sqrt{3}-\sqrt{6}$

- 12. The arrangement of $\sqrt{2}$, $\sqrt{5}$, $\sqrt{3}$ in ascending order is

- (a) $\sqrt{2}, \sqrt{3}, \sqrt{5}$ (b) $\sqrt{2}, \sqrt{5}, \sqrt{3}$ (c) $\sqrt{5}, \sqrt{3}, \sqrt{2}$ (d) $\sqrt{3}, \sqrt{2}, \sqrt{5}$
- 13. If m and n are two natural numbers and $m^n = 32$, then n^{mn} is

- (a) 5^2 (b) 5^3 (c) 5^{10} (d) 5^{12}
- 14. If $\sqrt{10} = 3.162$, then the value of $\frac{1}{\sqrt{10}}$ is
 - (a) 0.3162 (b) 3.162 (c) 31.62

(d) 316.2

- 15. If $\left(\frac{3}{4}\right)^6 \times \left(\frac{16}{9}\right)^5 = \left(\frac{4}{3}\right)^{x+2}$, then the value of x is
- (a) 2 (b) 4 (c) -2 (d) 6

CLASS IX : CHAPTER - 2 POLYNOMIALS

1.	Which of the foll (a) $x^2 + \sqrt{2}x$				$x^3 + 3x^2 - 3$		
2.	The degree of the	e polynomial 3: (b) 4		5x + 3 is	(d) 3		
3.	Zero of the polyr (a) $x = 0$	nomial p(x) = a (b) x = 1			(d) a = 0		
4.	Which of the following is a term of a polynomial?						
	(a) 2x	(b) $\frac{3}{x}$	(c) x	Tx	(d) \sqrt{x}		
5.	If $p(x) = 5x^2 - 3x$ (a) -10		equals (c) –9		(d) 10		
6.	Factorisation of x (a) $(x + 1)(x^2$ (c) $(x + 1)(x^2)$	-x + 1)		(b) (x + 1)(x (d) (x + 1)(x	$\frac{x^{2} + x + 1}{x^{2} + 1}$		
7.	If $x + y + 2 = 0$, to (a) $(x + y + 2)$	hen $x^3 + y^3 + 8$ (b) 0	equals	(c) 6xy	(d) –6xy		
8.	If $x = 2$ is a zero (a) -4	of the polynom (b) 0	ial 2x ² + (c) 8	3x – p, then t	he value of p is (d) 14		
9.		nial of degree 1 nial of degree 3		(b) a polynor (d) not a poly	nial of degree 2 ynomial		
10.	Integral zeroes of (a) -3, -7	the polynomia (b) 3, 7			(d) 3, –7		
11.	The remainder where (a) p(-2)	nen $p(x) = 2x^2$ (b) $p(2)$			- 2) is (d) p(-3)		
12.	If $2(a^2+b^2)=(a^2+b^2)$						
	(a) a + b = 0	(b) $a = b$	(c) 2a :	= b	(d) ab = 0		
13. If $x^3 + 3x^2 + 3x + 1$ is divided by $(x + 1)$, then the remainder is							
	(a) -8	(b) 0	(c) 8		(d) $\frac{1}{8}$		
14.	The value of (525 (a) 100	$(475)^2$ is (b) 1000	(c) 100	000	(d) -100		

(d) 6x+4

- 15. If a + b = -1, then the value of $a^3 + b^3 3ab$ is

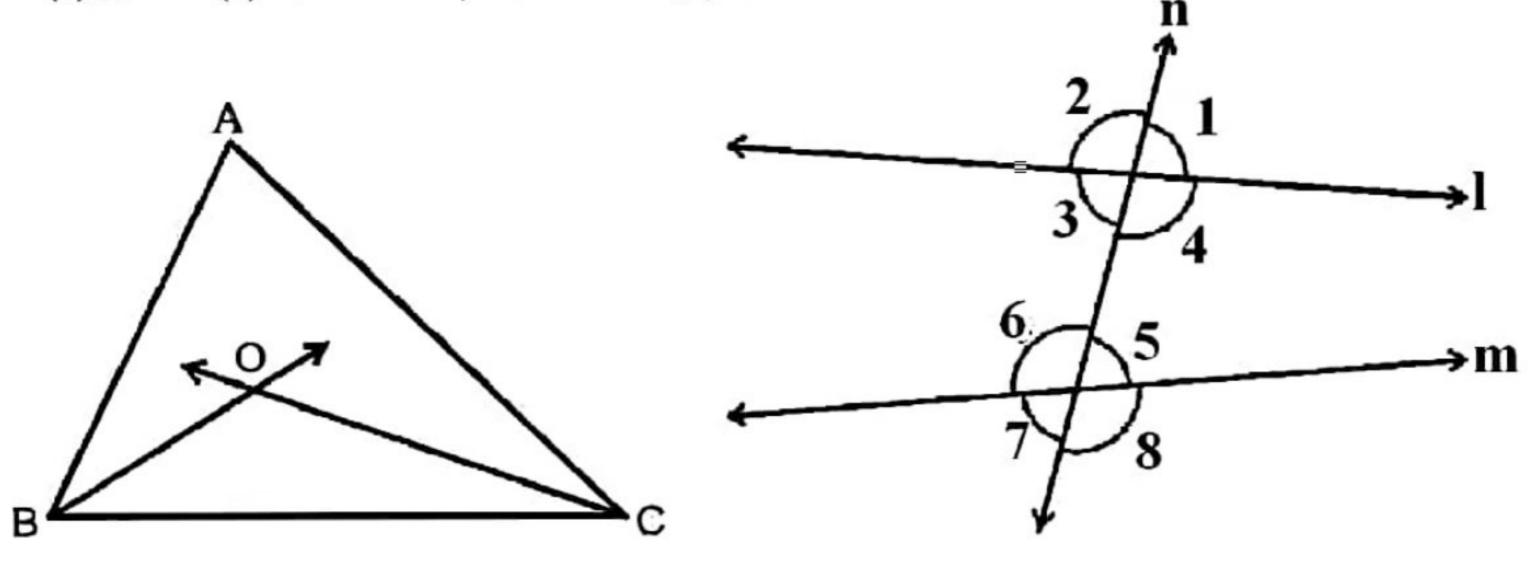
- (a) -1 (b) 1 (c) 26
- (d) -26
- 16. The value of $(2-a)^3 + (2-b)^3 + (2-c)^3 3(2-a)(2-b)(2-c)$ when a+b+c=6 is
 - (a) -3 (b) 3 (c) 0 (d) -1

- 17. If $\frac{a}{b} + \frac{b}{a} = 1$, $(a \ne 0, b \ne 0)$, then the value of $a^3 b^3$ is
 - (a) -1 (b) 0 (c) 1

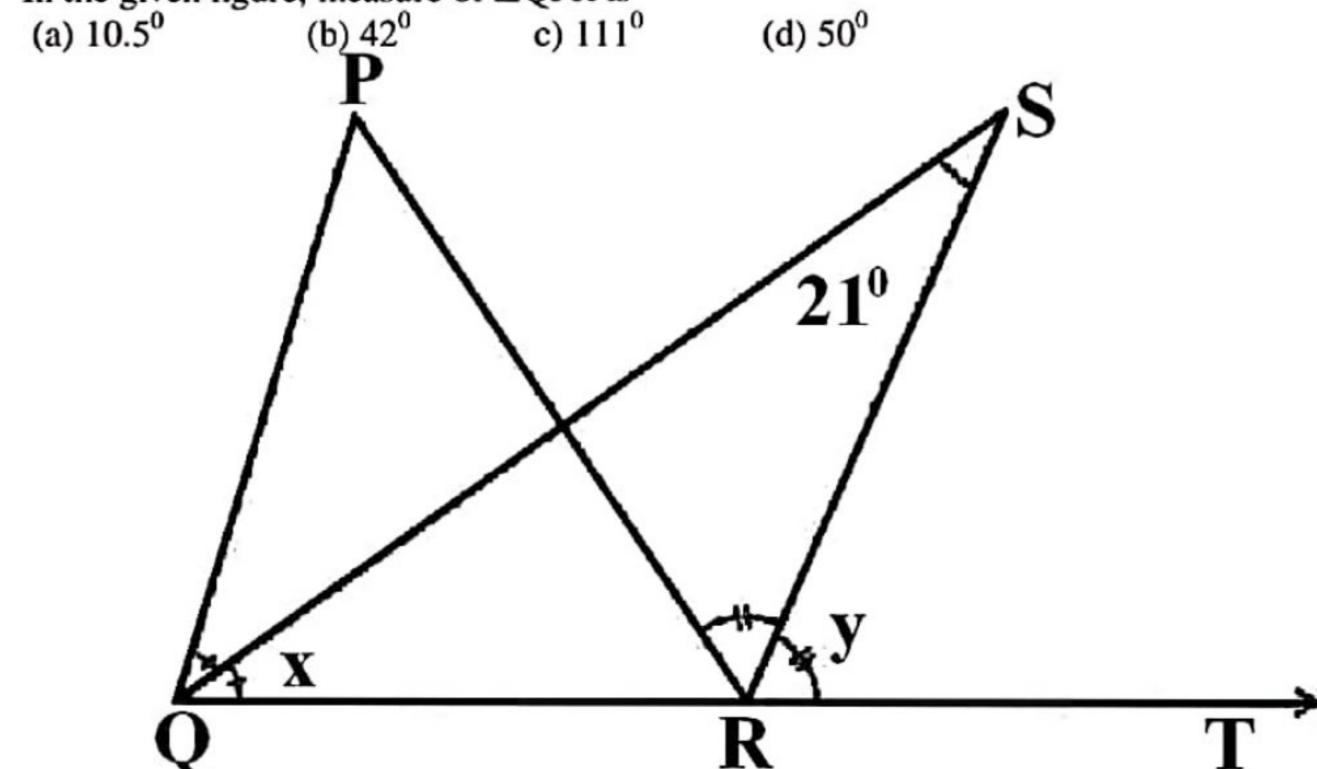
- 18. If $x = \frac{1}{2 \sqrt{3}}$, then the value of $(x^2 4x + 1)$ is
 - (a) -1 (b) 0 (c) 1

- (d) 3
- 19. The number of zeroes of the polynomial $x^3 + x 3 3x^2$ is
 - (a) 1

- (b) 2 (c) 0


- 20. If (x + 2) and (x 2) are factors of $ax^4 + 2x 3x^2 + bx 4$, then the value of a + b is
 - (a) -7 (b) 7 (c) 14

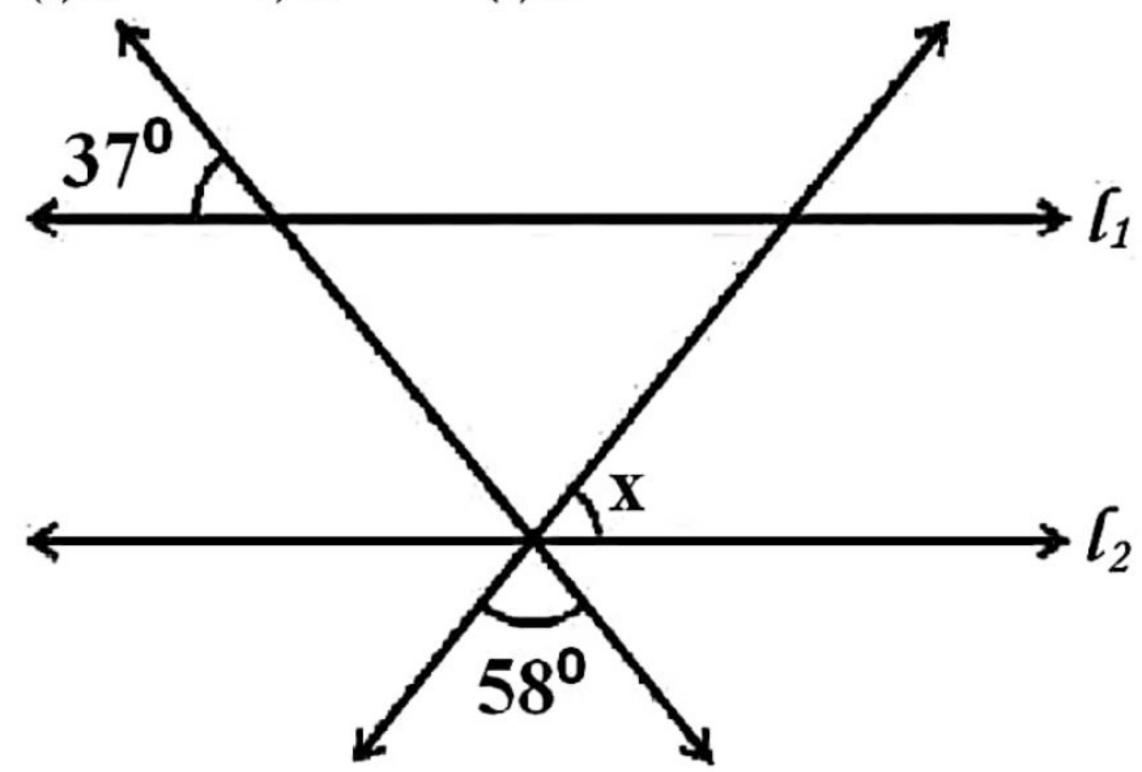
<u>CLASS IX: CHAPTER – 4</u> <u>LINEAR EQUATION IN TWO VARIABLES</u>


1.	Any point on the y (a) (a, a)	y = x is of the form (b) (0, a)		(d) (a,	-a)		
2.	The equation of x (a) $x = 0$				(d) $x = y$		
3.	Graph of y = 6 is a line: (a) parallel to x - axis at a distance 6 units from the origin (b) parallel to y - axis at a distance 6 units from the origin (c) making an intercept 6 on the x -axis. (d) making an intercept 6 on both the axes.						
4.	x=5, $y=2$ is a solut (a) $x + 2y = 7$			y = 7	(d) 5x	+ y = 7	
5.	If a linear equation has solutions $(-2, 2)$, $(0, 0)$ and $(2, -2)$, then its is of the form (a) $y - x = 0$ (b) $x + y = 0$ (c) $-2x + y = 0$ (d) $-x + 2y = 0$						
6.	The positive solution (a) 1 st quadran	ions of the equ t (b) 2 nd	ation is ax + by quadrant	$c + c = 0$ (c) 3^{rd}	always lie in th quadrant	ne (d)4 th quadrant	
7.	The graph of the land (a) (2, 0)	the left of the second of the	2x + 3y = 6 is a (c) (3, 0)			axis at the point	
8.	The graph of the y (a) $\left(\frac{3}{2}, -\frac{3}{2}\right)$	7			$\left(\frac{1}{2}, \frac{1}{2}\right)$		
9.	of the linear equat (a) changes			(b) rer	with a non-zero mains the same anges in case of	number, then the solu	ıtion
10.	10. How many linear equation in x and y can be satisfied by $x = 1$ and $y = 2$? (a) only one (b) two (c) infinitely many (d) three						
11.	11. The point of the form (a, a) always lies on: (a) $x - axis$ (b) $y - axis$ (c) on the line $y = x$ (d) on the $x + y = 0$						
12	12. The point of the form $(a, -a)$ always lies on: (a) $x = a$ (b) $y = -a$ (c) $y = x$ (d) $x + y = 0$						

CLASS IX: CHAPTER - 6 LINES AND ANGLES

- 1. What is the common between the three angles of a triangle and a linear pair
 - (b) in both cases sum of angle is 180°. (a) angles are equal
 - (c) In triangle there are three angles and in linear pair there are two angles (d) none of these.
- 2. In the given below left figure, the bisectors of ∠ABC and ∠BCA, intersect each other at point O. If $\angle BOC = 100^{0}$, the $\angle A$ is (a) 30^{0} (b) 20^{0} c) 40
 - (a) 30°
- c) 40^{0}
- (d) 50°

- 3. In the given above right sided figure, $\angle 2$ and $\angle 8$ are known as
 - (a) exterior angles
- (b) exterior angles on the same side of transversal.
- (c) alternate angles
- (d) alternate exterior angles.
- 4. In the given figure, measure of ∠QPR is



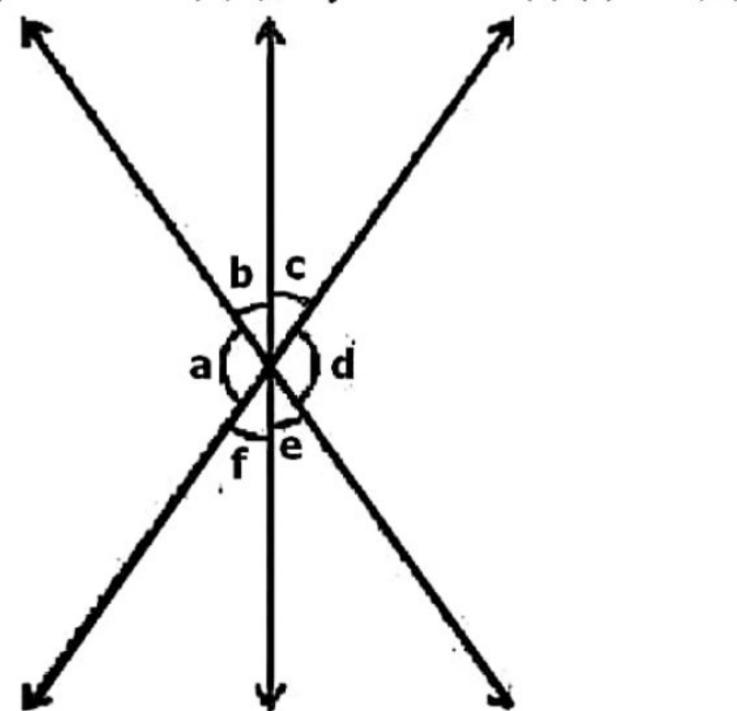
- 5. An angle is 200 more than three times the given angle. If the two angles are supplementary the angles are
 - (a) 20° and 160° (b) 40° and 140°
- c) 60^{0} and 120^{0}
- (d) 70^{0} and 110^{0}

6. In figure, if $l_1 \parallel l_2$, what is the value of x

(a) 90°

- (b) 85°
- c) 75⁰
- (d) 70^0

7. If a wheel has six spokes equally spaced, then the measure of the angle between two adjacent spokes is


(a) 90°

- (b) 30^{0}
- c) 60^{0}
- (d) 180°
- 8. In figure, which of the following statements must be true?

- (i) a + b = d + c (ii) $a + c + e = 180^0$ (iii) b + f = c + e

(a) (i) only

- (b) (ii) only
- c) (iii) only
- (d) (ii) and (iii) both

The angle which is two times its complement is

(a) 60°

- (b) 30^{0}
- c) 45°
- (d) 72^0
- 10. The angle which is two times its supplement is
 (a) 150⁰ (b) 60⁰ c) 90⁰

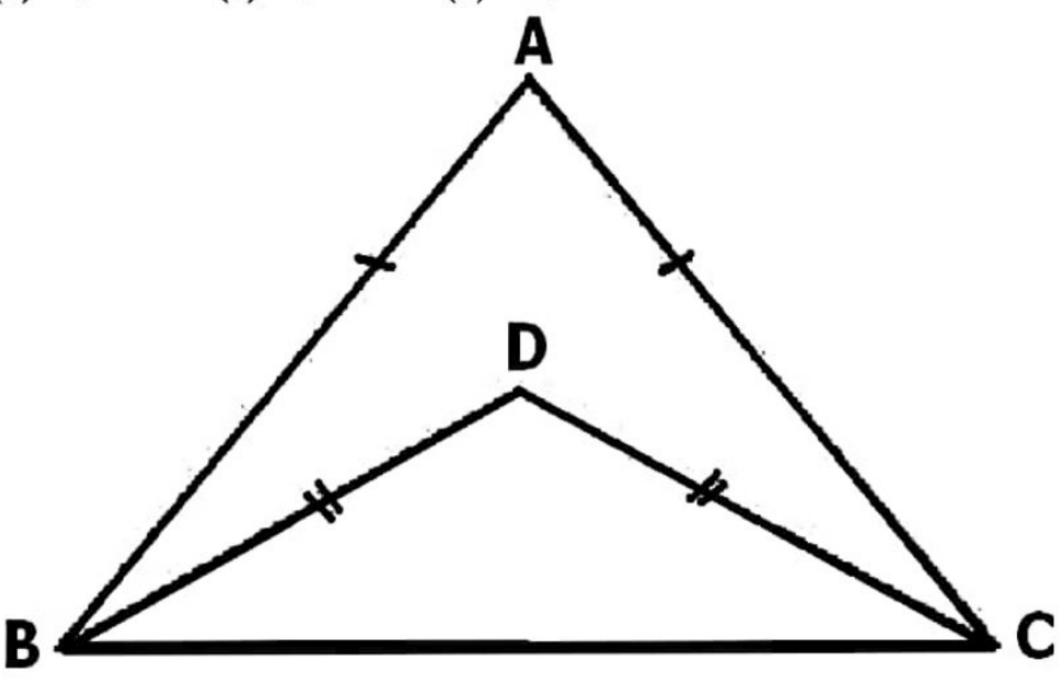
- (d) 120^{0}

<u>CLASS IX: CHAPTER - 7</u> TRIANGLES

1. If one angle of a triangle is equal to the sum of other two angles, then the triangle is

(a) an Equilateral triangle

(b) an Isosceles triangle


(c) an obtuse triangle

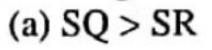
(d) a right triangle.

2. In the given figure, the ratio ∠ABD : ∠ACD is

(a) 1:1 (b) 2:1 (c) 1:2

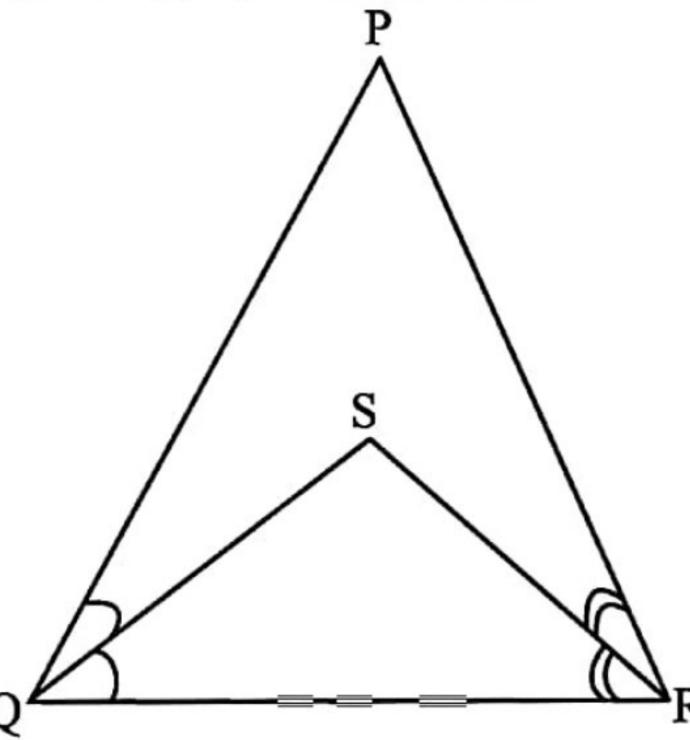
(d) 2:3

3. $\angle x$ and $\angle y$ are exterior angles of a $\triangle ABC$, at the points B and C respectively. Also $\angle B > \angle C$, then relation between $\angle x$ and $\angle y$ is


(a)
$$\angle x > \angle y$$

(b)
$$\angle x < \angle y$$

(c)
$$\angle x = \angle y$$


(b) $\angle x < \angle y$ (c) $\angle x = \angle y$ (d) none of these

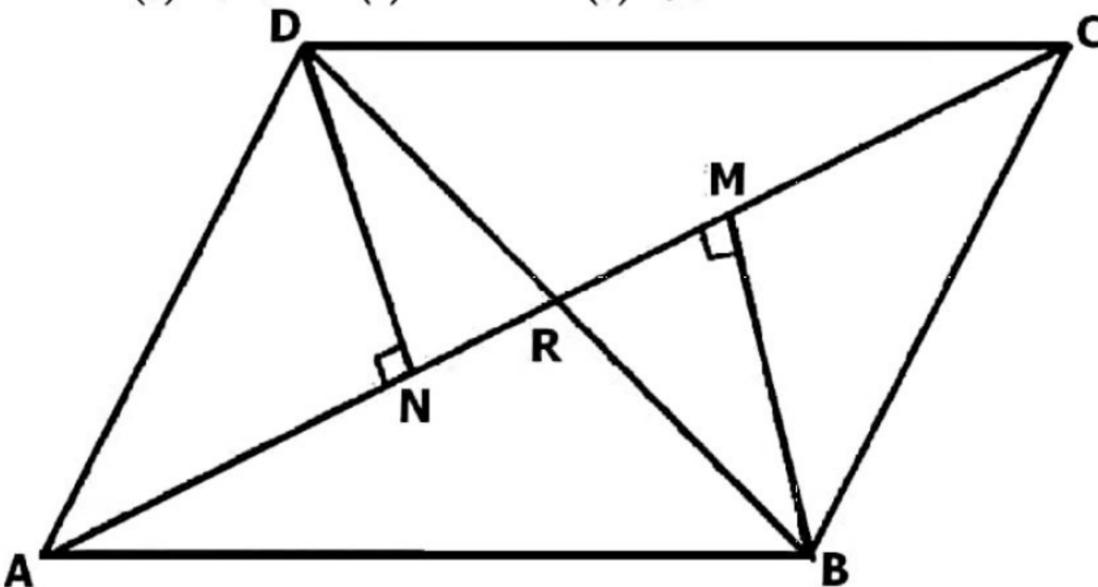
4. In the given figure, PQ > PR, QS and RS are the bisectors of $\angle Q$ and $\angle R$ respectively, then

(b)
$$SQ < SR$$
 (c) $SQ = SR$ (d) none of these

(c)
$$SQ = SR$$

- 5. If the bisector of vertical angle of a triangle is perpendicular to the base of triangle is
 - (a) an Equilateral triangle
- (b) a scalene triangle
- (c) an obtuse angled triangle
- (d) an acute angled triangle.
- 6. In a \triangle ABC and \triangle PQR, three equality relations between same parts are as follows:

$$AB = QP$$
, $\angle B = \angle P$ and $BC = PR$


State which of the congruence conditions applies:

- (a) SAS
 - (b) ASA
- (c) SSS
- (d) RHS
- 7. D, E, F are the midpoints of the sides BC, CA and AB respectively of \triangle ABC, then \triangle DEF is congruent to triangle
 - (a) ABC

(b) AEF

(c) BFD, CDE

- (d) AFE, BFD, CDE
- 8. In quadrilateral ABCD, BM and DN are drawn perpendicular to AC such that BM = DN. If BR = 8 cm, then BD is
 - (a) 4 cm
- (b) 2 cm
- (c) 12 cm
- (d) 16 cm

- 9. If $\triangle ABC \cong \triangle PQR$ and $\triangle ABC$ is not congruent to $\triangle RPQ$, then which of the following is not true:
 - (a) BC = PQ
- (b) AC = PR (c) QR = BC
- (d) AB = PQ
- 10. D is a point on the side BC of a \angle ABC such that AD bisects \triangle BAC. Then
 - (a) BD = CD
- (b) BA > BD (c) BD > BA (d) CD > CA

CLASS IX: CHAPTER - 12 HERON'S FORMULA

1. The sides of a triangle are 3 cm, 4 cm and 5 cm. Its area is
(a) 12 cm² (b) 15 cm² (c) 6 cm² (d) 9 cm²

2. The area of isosceles triangle whose equal sides are equal to 3 cm and other side is 4 cm. Its area is

(a) 20 cm^2 (b) $4\sqrt{5} \text{ cm}^2$ (c) $2\sqrt{5} \text{ cm}^2$ (d) 10 cm^2

3. The area of a triangular sign board of sides 5 cm, 12 cm and 13 cm is

(a) $\frac{65}{2}$ cm² (b) 30 cm² (c) 60 cm² (d) 12 cm²

4. The side of a triangle are in the ratio of 25:14:12 and its perimeter is 510m. The greatest side of the triangle is

(a) 120 m

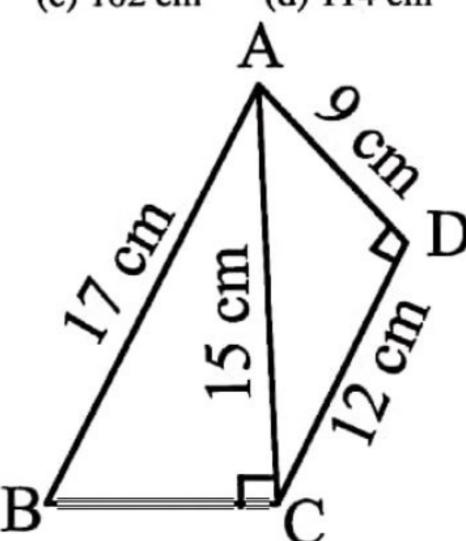
(b) 170 m (c) 250 m

(d) 270 m

5. The perimeter of a right triangle is 60 cm and its hypotenuse is 26 cm. The other two sides of the triangle are

(a) 24 cm. 10 cm (b) 25 cm. 9 cm (c) 20 cm. 14 cm (d) 26 cm. 8 cm

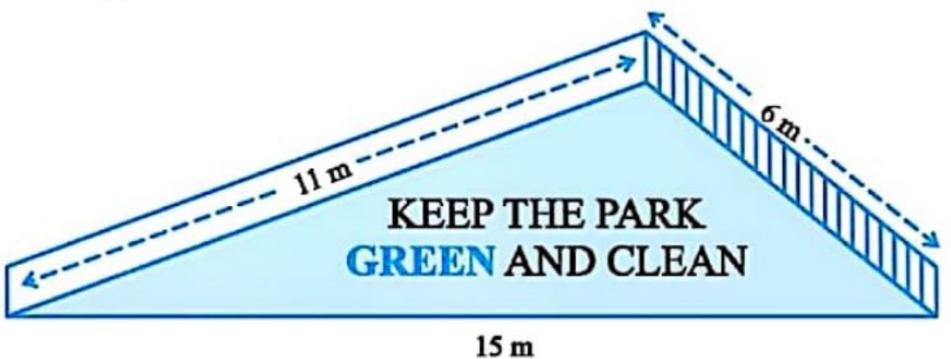
6. The area of quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5cm and AC = 5 cm is


(a) 15.2 cm^2 (b) 14.8 cm^2 (c) 15 cm^2 (d) 16.4 cm^2

7. The area of trapezium in which the parallel sides are 28 m and 40 m, non parallel sides are 9 m and 15 m is

(a) 286 m^2 (b) 316 m^2 (c) 306 m^2 (d) 296 m^2

8. The area of quadrilateral ABCD in the below figure is


(a) 57 cm^2 (b) 95 cm^2 (c) 102 cm^2 (d) 114 cm^2

9. A traffic signal board indicating 'SCHOOL AHEAD' is an equilateral triangle with side a, then height of the traffic signal is:

 $\frac{\sqrt{3}}{2}a^2$ (b) $\frac{\sqrt{3}}{4}a^2$ (c) $\frac{\sqrt{3}}{2}a$ (d) none of these

10. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". If the sides of the wall are 15 m, 11 m and 6 m, The area painted in colour is:

- (a) $10\sqrt{2} \text{ m}^2$ (b) $20\sqrt{2} \text{ m}^2$ (c) $30\sqrt{2} \text{ m}^2$ (d) none of these
- 11. An isosceles right triangle has area 8 cm2. The length of its hypotenuse is
 - (a) $\sqrt{32}$ cm

- (b) $\sqrt{16}$ cm (c) $\sqrt{48}$ cm (d) $\sqrt{24}$ cm
- 12. The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm2 is
 - (a) Rs 2.00
- (b) Rs 2.16
- (c) Rs 2.48
- (d) Rs 3.00
- 13. The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm, is
 - (a) $\sqrt{15}$ cm² (b) $\sqrt{\frac{15}{2}}$ cm² (c) $2\sqrt{15}$ cm² (d) $4\sqrt{15}$ cm²
- 14. The sides of a triangle are 35 cm, 54 cm and 61 cm, respectively. The length of its longest altitude

 - (a) $16\sqrt{5}$ cm (b) $10\sqrt{5}$ cm (c) $24\sqrt{5}$ cm (d) 28 cm
- 15. If the area of an equilateral triangle is $16\sqrt{3}$ cm2, then the perimeter of the triangle is
 - (a) 48 cm
- (b) 24 cm
- (c) 12 cm
- (d) 36 cm